Chemical Calculations

Molar mass

The molar mass of a substance can be calculated from its formula and the atomic masses (from the periodic table) of the atoms contained in each formula unit of the substance (a formula unit of water for example is one molecule whereas one formula unit of sodium chloride would be one sodium ion and one chloride ion).

A mole is an amount of substance, where one mole (1 mol) of a substance will have its molar mass in grams, for example:

Molar mass of $\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$:
$2 \mathrm{Fe}=2 \times 55.85=111.7$
$3 \mathrm{C}=3 \times 12.01=36.03$
$90=9 \times 16=144$
$=\underline{291.73}$
The 'molar mass' is the mass per mole, so the molar mass of iron carbonate is $291.7 \mathrm{~g} \mathrm{~mol}^{-1}$ So 1 mol of iron carbonate has a mass of 291.7 g

One mole of any substance has 6.02×10^{23} molecules (or formula units) of that substance. This number is called "Avagadro's number".

So there are $12.04 \times 10^{23} \mathrm{Fe}$ ions and 18.06×10^{23} carbonate ions in 291.7 g of iron carbonate.

Mole calculations

To calculate the number of moles in some mass of substance or the mass of some amount of moles, we use this equation:

This can be rearranged to $\mathrm{m}=\mathrm{n} \times \mathrm{M}$

Another way of thinking about this relationship is:

Mole ratio

A mole ratio is a fraction made from the coefficients (the number before each species in the balanced chemical equation) that represents the moles of each species required to exactly react, or the moles that will be produced.

Example: $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{A}_{2} \mathrm{~B}$

Some of the mole ratios here are:
$\frac{n_{B}}{n_{A}}=\frac{1}{2}$
$\frac{n_{A_{2} B}}{n_{B}}=\frac{1}{1}$
Note: The mole ratio is the only time in chemical calculations that the coefficients are used.

Excess and limiting reactants

When a reaction occurs there is often not exactly the right amount of each reactant present. One reactant will be completely used up (this is called the limiting reactant) and the other reactant will have some left over (in excess).

To determine which reactant is limiting and which is excess:

1. Calculate moles present of each reactant (if this is already given, skip this step)
2. Calculate moles of one required to exactly react with the moles present of the other Do this by writing the mole ratio and rearranging to find the unknown.
3. Compare moles present with moles required.
 reaction: $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

Moles present:

$n_{H_{2}}=\frac{m_{H_{2}}}{M_{H_{2}}}=\frac{1.0}{2.016}=0.50 \mathrm{~mol} \quad n_{O_{2}}=\frac{m_{O_{2}}}{M_{O_{2}}}=\frac{10.0}{32.00}=0.31 \mathrm{~mol}$

Moles of O_{2} required to react with the H_{2} present:
$\frac{n_{O_{2}}}{n_{H_{2}}}=\frac{1}{2}$
$\therefore n_{O_{2}}=\frac{1}{2} \times n_{H_{2}}$
$=\frac{1}{2} \times 0.50$
$=0.25 \mathrm{~mol}$

Compare with moles present of O_{2} :
There are $0.25 \mathrm{~mol} \mathrm{O}_{2}$ required and $0.31 \mathrm{~mol}_{2}$ present.
More moles are present than required, so $\underline{\mathrm{O}}_{2}$ is excess. This means $\underline{\mathrm{H}}_{2}$ is limiting.

